139 lines
4.1 KiB
C
139 lines
4.1 KiB
C
#include <bits/pthreadtypes.h>
|
|
#include <float.h>
|
|
#include <math.h>
|
|
#include <stdbool.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
|
|
#ifdef __PROGTEST__
|
|
#define debug(...) ((void)0)
|
|
#else
|
|
#define debug(fmt, ...) \
|
|
fprintf(stdout, "[%s:%d %s()] " fmt "\n", __FILE__, __LINE__, __func__, \
|
|
##__VA_ARGS__)
|
|
#endif
|
|
|
|
double clamp(double d) {
|
|
if (d > 1.0) {
|
|
return 1.0;
|
|
} else if (d < -1.0) {
|
|
return -1.0;
|
|
} else {
|
|
return d;
|
|
}
|
|
}
|
|
|
|
// https://www.geeksforgeeks.org/dsa/area-of-intersection-of-two-circles/
|
|
double intersection_area(double a_r, double b_r, double distance) {
|
|
double a_square = a_r * a_r;
|
|
double b_square = b_r * b_r;
|
|
double distance_square = distance * distance;
|
|
|
|
double alpha_acos =
|
|
(distance_square + a_square - b_square) / (2 * a_r * distance);
|
|
double beta_acos =
|
|
(distance_square + b_square - a_square) / (2 * b_r * distance);
|
|
|
|
double alpha = acos(clamp(alpha_acos)) * 2;
|
|
double beta = acos(clamp(beta_acos)) * 2;
|
|
|
|
double a1 = 0.5 * beta * b_square - 0.5 * b_square * sin(beta);
|
|
double a2 = 0.5 * alpha * a_square - 0.5 * a_square * sin(alpha);
|
|
|
|
double area = a1 + a2;
|
|
|
|
debug("Area = %lf", area);
|
|
|
|
return area;
|
|
}
|
|
|
|
double circle_area(double radius) { return M_PI * radius * radius; }
|
|
|
|
int main() {
|
|
double a_center_x = 0, a_center_y = 0, a_radius = 0, b_center_x = 0,
|
|
b_center_y = 0, b_radius = 0;
|
|
|
|
printf("Zadejte parametry kruznice #1:\n");
|
|
|
|
int inputs_read = scanf("%lf %lf %lf", &a_center_x, &a_center_y, &a_radius);
|
|
if (inputs_read != 3 || a_radius <= 0) {
|
|
printf("Nespravny vstup.\n");
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
printf("Zadejte parametry kruznice #2:\n");
|
|
|
|
inputs_read = scanf("%lf %lf %lf", &b_center_x, &b_center_y, &b_radius);
|
|
if (inputs_read != 3 || b_radius <= 0) {
|
|
printf("Nespravny vstup.\n");
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
double center_distance =
|
|
sqrt((b_center_x - a_center_x) * (b_center_x - a_center_x) +
|
|
(b_center_y - a_center_y) * (b_center_y - a_center_y));
|
|
|
|
debug("Distance of centers = %0.60lf", center_distance);
|
|
debug("Radii difference = %0.60lf", a_radius - b_radius);
|
|
debug("Radii difference = %0.60lf", b_radius - a_radius);
|
|
debug("Center + #1 = %0.60lf", a_center_x + a_radius);
|
|
debug("Center + #2 = %0.60lf", b_center_x + b_radius);
|
|
|
|
double radii_sum = a_radius + b_radius;
|
|
double radii_difference = fabs(a_radius - b_radius);
|
|
double epsilon = 100 * DBL_EPSILON * fmax(a_radius, b_radius);
|
|
|
|
// Both origin points and radii are identical
|
|
bool are_identical = a_center_x == b_center_x && a_center_y == b_center_y && a_radius == b_radius;
|
|
|
|
// d = r1 + r2
|
|
// d - r1 - r1 < epsilon
|
|
bool are_touching_from_outside = fabs(center_distance - radii_sum) < epsilon;
|
|
|
|
// d = |r1 - r2|
|
|
// d - |r1 - r2| < epsilon
|
|
bool are_touching_from_inside = fabs(center_distance - radii_difference) < epsilon;
|
|
|
|
// d < |r1 - r2|
|
|
bool is_fully_inside = center_distance < radii_difference;
|
|
|
|
// d < r1 + r2
|
|
bool are_overlapping = center_distance < radii_sum;
|
|
|
|
if (are_identical) {
|
|
printf("Kruznice splyvaji, prekryv: %lf\n", circle_area(a_radius));
|
|
}
|
|
else if (are_touching_from_inside) {
|
|
if (a_radius > b_radius) {
|
|
printf(
|
|
"Vnitrni dotyk, kruznice #2 lezi uvnitr kruznice #1, prekryv: %lf\n",
|
|
circle_area(b_radius));
|
|
} else {
|
|
printf(
|
|
"Vnitrni dotyk, kruznice #1 lezi uvnitr kruznice #2, prekryv: %lf\n",
|
|
circle_area(a_radius));
|
|
}
|
|
}
|
|
else if (are_touching_from_outside) {
|
|
printf("Vnejsi dotyk, zadny prekryv.\n");
|
|
}
|
|
else if (is_fully_inside) {
|
|
if (a_radius > b_radius) {
|
|
printf("Kruznice #2 lezi uvnitr kruznice #1, prekryv: %lf\n",
|
|
circle_area(b_radius));
|
|
} else {
|
|
printf("Kruznice #1 lezi uvnitr kruznice #2, prekryv: %lf\n",
|
|
circle_area(a_radius));
|
|
}
|
|
}
|
|
else if (are_overlapping) {
|
|
printf("Kruznice se protinaji, prekryv: %lf\n",
|
|
intersection_area(a_radius, b_radius, center_distance));
|
|
}
|
|
else {
|
|
printf("Kruznice lezi vne sebe, zadny prekryv.\n");
|
|
}
|
|
|
|
return EXIT_SUCCESS;
|
|
}
|