using System;
namespace NAudio.Dsp
{
///
/// Summary description for FastFourierTransform.
///
public static class FastFourierTransform
{
///
/// This computes an in-place complex-to-complex FFT
/// x and y are the real and imaginary arrays of 2^m points.
///
public static void FFT(bool forward, int m, Complex[] data)
{
int n, i, i1, j, k, i2, l, l1, l2;
float c1, c2, tx, ty, t1, t2, u1, u2, z;
// Calculate the number of points
n = 1;
for (i = 0; i < m; i++)
n *= 2;
// Do the bit reversal
i2 = n >> 1;
j = 0;
for (i = 0; i < n - 1; i++)
{
if (i < j)
{
tx = data[i].X;
ty = data[i].Y;
data[i].X = data[j].X;
data[i].Y = data[j].Y;
data[j].X = tx;
data[j].Y = ty;
}
k = i2;
while (k <= j)
{
j -= k;
k >>= 1;
}
j += k;
}
// Compute the FFT
c1 = -1.0f;
c2 = 0.0f;
l2 = 1;
for (l = 0; l < m; l++)
{
l1 = l2;
l2 <<= 1;
u1 = 1.0f;
u2 = 0.0f;
for (j = 0; j < l1; j++)
{
for (i = j; i < n; i += l2)
{
i1 = i + l1;
t1 = u1 * data[i1].X - u2 * data[i1].Y;
t2 = u1 * data[i1].Y + u2 * data[i1].X;
data[i1].X = data[i].X - t1;
data[i1].Y = data[i].Y - t2;
data[i].X += t1;
data[i].Y += t2;
}
z = u1 * c1 - u2 * c2;
u2 = u1 * c2 + u2 * c1;
u1 = z;
}
c2 = (float)Math.Sqrt((1.0f - c1) / 2.0f);
if (forward)
c2 = -c2;
c1 = (float)Math.Sqrt((1.0f + c1) / 2.0f);
}
// Scaling for forward transform
if (forward)
{
for (i = 0; i < n; i++)
{
data[i].X /= n;
data[i].Y /= n;
}
}
}
///
/// Applies a Hamming Window
///
/// Index into frame
/// Frame size (e.g. 1024)
/// Multiplier for Hamming window
public static double HammingWindow(int n, int frameSize)
{
return 0.54 - 0.46 * Math.Cos((2 * Math.PI * n) / (frameSize - 1));
}
///
/// Applies a Hann Window
///
/// Index into frame
/// Frame size (e.g. 1024)
/// Multiplier for Hann window
public static double HannWindow(int n, int frameSize)
{
return 0.5 * (1 - Math.Cos((2 * Math.PI * n) / (frameSize - 1)));
}
///
/// Applies a Blackman-Harris Window
///
/// Index into frame
/// Frame size (e.g. 1024)
/// Multiplier for Blackmann-Harris window
public static double BlackmannHarrisWindow(int n, int frameSize)
{
return 0.35875 - (0.48829 * Math.Cos((2 * Math.PI * n) / (frameSize - 1))) + (0.14128 * Math.Cos((4 * Math.PI * n) / (frameSize - 1))) - (0.01168 * Math.Cos((6 * Math.PI * n) / (frameSize - 1)));
}
}
}